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ABSTRACT: We propose a life cycle optimization framework
for the design of sustainable product systems and supply chains
considering the concept of “functional unit” under economic and
environmental criteria. This general modeling framework
integrates the life cycle analysis methodology with multiobjective
optimization and measures both the economic and environmental
performances based on a standard quantity of functional unit
associated with final products. The Pareto-optimal frontier
returned by the multiobjective optimization problem reveals the
trade-off between the economic and environmental objectives.
We also present tailored optimization algorithms for efficiently
solving the mixed-integer linear fractional programming problems,
which result from the life cycle optimization framework. We apply
the proposed life cycle optimization framework to a case study on the hydrocarbon biofuels through a spatially explicit model for
the county-level supply chain in Illinois. The Pareto-optimal results show that the environmental impact of hydrocarbon biofuels
ranges from 10.66 to 23.83 kg CO2 equiv per gasoline-equivalent gallon (GEG), corresponding to the unit cost ranging from
$4.63 to $3.58/GEG.
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■ INTRODUCTION

Concerns about climate change, waste pollution, energy
security, and resource depletion are driving society to explore
a more sustainable way for development and manufacturing.
This leads to the question of how to evaluate and improve the
sustainability of the product system, which is defined as the
method, procedure, or arrangement that includes all functions
required to accumulate the inputs, process the inputs, and
deliver the marketable outputs.1 The three core components of
a product system are illustrated in Figure 1a. In general, a
product system can be treated as a “conversion process” that
uses common resources such as labor, capital (machinery and
equipment, materials, etc.), and space (land, building, etc.) to
convert resources into useful goods and services. From a value-
add perspective, all the economic costs and environmental
impacts will be accumulated and embedded into the last stage
of the product systemfinal products. The supply chain, as a
typical product system with the highest vertical hierarchy,2 is a
network of facilities and logistic options involving various
activities such as procurement of feedstock, transportation and
storage of feedstock, conversion of feedstock into finished
products, distribution of products to demand zones, and
product end use (Figure 1b). In the chemical process industry,
there are various supply chains with multiple scales, echelons,

and products. Extensive research both in academia and industry
has been done to improve the overall economic performances
for the design and operation of supply chains, among which the
enterprisewide optimization is considered as a promising
frontier in process systems engineering.3−5

Though cost minimizing is critical to the economic viability
and profitability of a chemical product system and supply chain,
there has been an increasing awareness of the importance to
achieve a sustainable design in the recent decade.6,7 Srivastava8

presented a comprehensive review on the scope of green supply
chain management and remarked the importance of a more
extensive use of mathematical programming tools that can
contribute to a major advance in an environmentally conscious
supply chain management. Considering the environmental
impact as a design objective rather than merely a constraint on
operations would lead to the discovery of novel alternatives
with both better economic and environmental perform-
ances.9−11 However, life-cycle thinking is very critical when
measuring the environmental metrics, and the consequences of
ignoring impacts over the entire life cycle were illustrated by
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the works of Fava12 and Azapagic.13,14 Following the idea of
incorporating a life-cycle environmental objective into the
decision making process, a number of works based on the
multiobjective optimization approach emerged to simultane-
ously improve the economic and environmental performances
of the holistic product system and supply chain. Seuring and
Müller15 proposed a conceptual framework for sustainable
supply chain management, in which specific features of
sustainable supply chains were discussed as well as limitations
and challenges in the research. Hugo and Pistikopoulos16

presented a mathematical programming-based methodology
that explicitly includes life cycle assessment criteria as part of
the strategic investment decisions related to the design and
planning of supply chain networks. Liu et al.17 incorporated a
greenhouse gas emissions indicator as one of the design
objectives when studying energy systems engineering problems.
Elia et al.18 proposed an optimization framework for a
nationwide energy supply chain network considering CO2
emissions reduction. Santibañez-Aguilar et al.19 presented a
multiobjective optimization model for the optimal planning of a
biorefinery considering both economic and environmental
aspects. You et al.20 and You and Wang21 proposed a life cycle
optimization framework and studied several applications on the
optimal design and scheduling on hydrocarbon biofuel supply
chains. Giarola et al.22 and Akgul et al.23 proposed spatially
multiobjective models for design and planning of hybrid first/
second generation biorefineries and supply chain, which
optimized the environmental and financial performances
simultaneously. Cucek et al.24 recommended a total foot-
prints-based multicriteria optimization framework for the
design of regional biomass energy supply chains. Recently,
Santibañez-Aguilar et al.25 studied the synthesis of distributed
biorefining networks for sustainable elimination of water
hyacinth which would cause severe ecological problems in the
infested water bodies. Relevantly, the life cycle optimization
framework has also been applied to sustainable design of
biorefineries under economic and environmental criteria.9,11,26

All the works reviewed above consider the absolute economic
and environmental objectives. However, in a product system,
the economic and environmental metrics associated with per
functional unit of final products provide further space for
improvement regarding economic and environmental concerns,
because all the costs and environmental impacts will be
embedded and reflected in the functioning outputs of the
system: functional unit. In light of this point, we propose two
fractional objective functions. The economic objective is
defined as total cost divided by total quantity of the functional
unit. By using this economic objective, we can determine the
optimal sales amount between the demand upper and lower

bounds to guarantee the lowest unit cost per functional unit.
This would make the final products more cost-competitive in
the marketplace. The environmental objective is defined as total
environmental impact divided by total quantity of the
functional unit. By using this objective function, we can
guarantee the lowest environmental impact per functional unit,
which would lead to more environmentally friendly product
patterns.
The bicriterion optimization problem is solved using the ε-

constraint method to obtain a set of Pareto optimal solutions.27

In this work, since both the economic and environmental
objective functions are linear fractional functions, each
subproblem in the ε-constraint method will be formulated as
a mixed-integer linear fractional program (MILFP), which is a
special class of nonconvex mixed-integer nonlinear programs
(MINLPs) that can be computationally intractable for large-size
problems due to its combinatorial nature and the pseudocon-
vexity of its objective function.28−30 Though general-purpose
MINLP solvers and global optimizers can be utilized, it is
demonstrated that the tailored solution approaches for MILFPs
are much more efficient and effective, namely the parametric
algorithm31 and reformulation-linearization method, because
these two approaches can take advantage of the efficient mixed-
integer linear programming (MILP) methods to globally
optimize the MILFP problems with higher computational
efficiency and lower memory requirements.
The major novelties of this work are summarized as follows.

• Novel functional-unit-based life cycle optimization
modeling framework for the design of general product
systems and supply chains.

• Functional unit based economic and environmental
models as the optimization objectives and efficient
solution strategies.

• Application to sustainable hydrocarbon biofuel supply
chain systems.

The rest of the article is organized as follows. We first
describe the proposed life cycle optimization modeling
framework. Then, an illustrative example is analyzed to
demonstrate the trade-offs between various criteria. Later, we
present the general problem statement and model formulation,
followed by the major solution approaches employed in this
work. A county-level case study on the design of hydrocarbon
biofuel supply chains is presented to illustrate the application of
the modeling framework and solution strategy. The article is
concluded in the last section.

Figure 1. Illustration of general product systems and supply chain networks: (a) general product systems; (b) general structure of supply chain
systems.
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■ LIFE CYCLE OPTIMIZATION FRAMEWORK

To overcome the drawbacks of classical life cycle assessment
(LCA) methodology, we propose a novel life cycle optimization
framework which organically integrates the classical four-step
LCA methodology with multiobjective optimization meth-
od.20,21 In the life cycle optimization framework, we will follow
the first three phases of the classical LCA, which are goal and
scope definition, inventory analysis, and impact assessment.
Whereas, the remaining phase−LCA interpretationwill be
performed by coupling with multiobjective optimization. The
results of life cycle optimization would be presented in the form
of a Pareto frontier which reveals the trade-off between the
economic and environmental objectives. The life cycle
optimization framework is illustrated in Figure 2.
Goal and Scope Definition. This is the first and the most

critical phase which defines the main features of the LCA
analysis, including the goal of the study, system boundaries,
allocation methods, and impact categories, etc. In the study of
product systems and supply chains, we restrict the domain of
study to all the life cycle stages from “cradle-to-gate”, which
include the following activities: feedstock acquisition, feedstock
transportation and storage, conversion from feedstock to
products, storage and distribution of final products, and
product end use. In certain situations, feedstock is not
converted directly to finished products but goes through
several intermediate processing steps. For example, the
biomass-derived gasoline can be converted directly from crop
residues at integrated biorefineries or it can be upgraded from
bio-oil which is an intermediate product from preconversion
facilities using crop residues as feedstock.
The “functional unit” is also defined in the first phase, which

is a key element of life cycle analysis. The functional unit
provides a reference to which the system’s inputs and outputs
can be related, and a logical basis for comparing the
sustainability performance for different products. In a product
system, it is straightforward to define the functional unit
associated to the products. In single-product systems, the
quantity of functional unit can simply be the number or
weight/volume amount of the product. However, in multi-
product systems, the quantity of functional unit is usually
calculated based on some functioning properties of the various
products (e.g., density, heating value, market value). For
example, gasoline-equivalent gallon (GEG) is defined as the
amount of alternative fuel it takes to equal the energy content
of one liquid gallon of gasoline and, thus, can be considered as
the functional unit that characterize different fuel products (e.g.,
gasoline, diesel, jet fuel). A general formula for the calculation

of standard quantity of total functional unit is given below. An
illustration regarding a product system involving 1 unit of
product A and 2 units of product B is given in Figure 3.

∑ λ= ·qt qtS

i
i i

(1)

where qtS stands for the quantity of standard functional unit,
qti is the quantity of product i and λi is the function weighting
(characterization) factor defined as the amount of functional
unit associated with product i.

Inventory Analysis. In the second phase of LCA, the life
cycle inventory is analyzed related to each process/activity in
the life cycle stages confined within the system boundary. Mass
and energy balances are required to identify and quantify the
most relevant inputs and outputs of materials and energy use
associated with the process/activity. Note that the life cycle
inventory mentioned here is a different concept from the
physical inventory kept in stock keeping units, which is an
important part of the supply chain management.

Impact Assessment. In this phase, the inventory entries
can be translated into impacts using impact factors, and then,
the impacts can be aggregated into a single metric. The most
widely used LCA metrics include GWP (global warming
potential), EI-99 (Eco-indicator 99), etc. GWP measures how
much heat could be trapped by greenhouse gas (GHG)
emissions relative to CO2. EI-99 evaluates the environmental
impacts in more comprehensive categories (e.g., human health,
ecosystem quality, and resources) and provides an environ-
mental indicator point. The damage and environmental impacts
is determined based on the life cycle inventory by multiplying
each life cycle inventory entry with the corresponding impact
factor specified by the damage assessment model.

Interpretation. In the fourth phase, the LCA results are
analyzed to provide a set of conclusions and recommendations.
In this regard, the goal of LCA is to provide criteria and
quantitative measurements for comparing different supply chain

Figure 2. Life cycle optimization modeling framework.

Figure 3. Calculation of the standard quantity for a multiproduct
system (FU: functional unit).
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design and operation alternatives. However, one of the critical
drawbacks of classical LCA framework is that it lacks a
systematic approach for generating such alternatives and
identifying the best one in terms of environmental perform-
ance. To circumvent these limitations, we couple optimization
tools with environmental impact assessment. This integrated
framework would allow us to evaluate the environmental
impacts of diverse process alternatives and identify the optimal
solution via multiobjective optimization. Note that various
impact metrics can be employed as the environmental
objective. A set of Pareto-optimal solutions can be obtained
by solving the multiobjective optimization problem. These
Pareto solutions form a Pareto curve which reveals the trade-off
between the economic objective and environmental objective,
thus allowing for a better decision-making for the design and
operation of sustainable product systems and supply chains.

■ ILLUSTRATIVE EXAMPLE
To reveal the trade-offs between the economic and environ-
mental objectives, we present an illustrative example for a
simplified supply chain optimization problem in this section.
The structure of the supply chain is given in Figure 4. As can be

seen, we consider a cradle-to-gate life cycle boundary in this
problem. This product system includes three life cycle stages,
which are raw material acquisition, conversion process, and
product distribution, respectively. Specifically in this product
system, raw material A is collected from the supplier; then raw
material A will be converted into product B or product C at a
given production ratio in the conversion process; and at the last
stage product B and product C are distributed to the market to
meet the demand requirements. At every stage of the product
system, costs and environmental impacts would occur, which
would eventually be embedded and reflected in the final
products as economic and environmental footprints.
On the basis of the structure given in Figure 4, we present

the economic and environmental data of this simplified supply
chain model as follows. We first assume that the cost is
measured by monetary units (e.g., USD) and the environmental
impact is measured in terms of damage factors (e.g., Eco-

Indicator 9932 points). The costs and impact data are given in
Table 1. The fixed costs and environmental impact account for
the setup and infrastructure. The production ratio of raw
material A to product B is 1:1. The production ratio of raw
material A to product C is also 1:1. The processing capacity of
the conversion process is 3 ton of raw material A per day. The
minimum demand is 1 ton per day for both product B and
product C, assuming there is no upper limit for the demands of
the market. The amount of provision of functions (e.g.,
electricity) is 1 functional unit (e.g., kW h) for per ton of
product B and 1.5 functional unit for per ton of product C.
Here in this problem, we consider four metrics, namely the

absolute total cost, absolute total environmental impact, cost
per functional unit, and environmental impact per functional
unit. Let xB and xC stand for the produced quantity of product
B and product C, respectively. The acquisition amount of raw
material A can be calculated according to its production ratios
with product B and product C, namely xA = xB + xC. For clarity,
we show here how the total cost is calculated. The total
acquisition cost is 20xA = 20(xB + xC); the total production cost
equals to the variable part 70xB + 520xC plus the fixed part 250;
The total distribution cost is 10xB + 60xC. By summing up all
the cost components, we can derive

= + +x xtotal cost 250 100 600B C (2)

Similarly, the other metrics can be derived and given as
follows.

= + +x xtotal environmental impact 300 400 200B C (3)

=
+ +

+
x x

x x
unit cost

250 100 600
1.5
B C

B C (4)

=
+ +

+
x x

x x
unit environmental impact

300 400 200
1.5
B C

B C (5)

The total production amount of product B and product C
cannot exceed the capacity of the conversion process, which
suggests

+ ≤x x 3B C (6)

Also, minimum demands from the market have to be met,
which leads to

≥ ≥ ∈ ∈ x x x x1, 1; ,B C B C (7)

We perform a scenario analysis for this illustrative example.
Four scenarios producing different amounts of product B and
product C are considered. By evaluating the objective functions
above, we summarized the results in Table 2. Scenario 1
produces minimum amount of product B and product C to
satisfy the minimum demand from the market. It is obvious that
this scenario leads to the lowest total cost as well as the lowest
total environmental impact. However, the unit cost and unit
environmental impact are also important for a product system

Figure 4. Superstructure of the illustrative example.

Table 1. Inputs of the Illustrative Example

processes material variable cost ($/ton) variable environmental impact (points/ton) fixed cost ($) fixed environmental impact (points)

raw material acquisition A 20 40
conversion process B 70 300 250 300

C 520 140
product distribution B 10 60

C 60 20
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and supply chain in practice. We can see that the unit cost of
scenario 1 is much higher than that of scenario 3, while the unit
environmental impact of scenario 1 is much higher than that of
scenario 4. In other words, scenario 3 appears to be the most
cost-effective design, while scenario 4 produces the products in
the most environmentally friendly way. Scenario 2 has mediate
unit cost and unit environmental impact and, thus, can be
treated as a balance solution between cost-reduction and green
manufacturing. Besides, note that scenarios 2−4 fully utilize the
production capacity while scenario 1 does not. Therefore, we
conclude that employing the functional-unit-based economic
and environmental objectives allows us to take full advantage of
the process capacities of the product system and demand
potentials in the marketplace.

■ GENERAL PROBLEM STATEMENT
In the design of general product systems and supply chains, the
parameters below are given.

• A set of locations, including feedstock harvesting sites,
conversion facility candidates, storage sites, and demand
zones.

• Technical and logistic options, including alternative
conversion technologies, types of storage, and trans-
portation modes.

• Capacity limitations, including availability of feedstock at
harvesting sites, demands of final products at demand
zones, and production as well as inventory capacity at
conversion facilities and storage sites.

• Timing parameters, including planning horizon, lead
times of production and transportation.

• Costs data, including feedstock acquisition costs, trans-
portation costs, capital investments, operation and
maintenance (O&M) costs, storage holding costs, final
product distribution costs, and government incentives.

• Environmental impact data, including impacts for
feedstock acquisition, transportation, material processing,
storage, final product distribution, and environmental
credits.

• Problem specific conditions, including material degrada-
tion, seasonality, setup costs, backlogging and lost sale
penalties, etc.

Major decision variables for the design of sustainable product
systems and supply chains are summarized as follows.

• Selection of feedstock suppliers, conversion facilities, and
storage sites.

• Selection of conversion technologies, storage types, and
transportation modes.

• Feedstock procurement amounts, product sales, produc-
tion targets, inventory levels, and inter-region material
flow amounts.

There are two objectives as discussed in the section above:
the economic objective is to minimize the unit cost per

functional unit and the environmental objective is to minimize
the environmental impact per functional unit.

■ GENERAL MODEL FORMULATION
According to the general problem statement mentioned in the
previous section, we present the general life cycle optimization
model for the design of sustainable product systems and supply
chains in this section. The bicriterion optimization problem is
given below and denoted as problem (P0).

∑ ∑ λ= ·ftc cost qt(P0) min /
g

g
i

i i
(8)

∑ ∑ λ= ·fte env qtmin /
g

g
i

i i
(9)

+ · ̅ + · ̅ =C C x C ys. t. 0 1 2 0 (10)

̅ ∈ ̅ ∈x yand {0, 1}n m
(11)

where i is the set of products; qti is the quantity of products i; λi
is the amount of functional unit associated with product i. For a
given system, once defined, a functional unit is used for all the
objectives and constraints, thus the weighting factors λi are
constants. g is the set of process stages (e.g., procurement,
production, transportation, and storage), x ̅ is the vector of the
continuous variables, y ̅ is the vector of binary 0−1 variables, and
C0, C1, and C2 are parameters in matrix format. Note that, the
vector x ̅ includes all the continuous variables, such as costg, envg,
qti, etc. Distinguishing them from x ̅ is merely for better
understanding of the physical meaning of the model. Equation
8 defines the economic objective, where f tc is the unit cost per
functional unit, and costg is the total cost associated with stage g.
Equation 9 defines the environmental objective, where f te is the
environmental impact per functional unit, and envg is the total
environmental impact associated with stage g. All the
constraints (e.g., mass balance relationship, capacity constraints,
and availability constraints) are written in a compact format
given as eq 10. Without loss of generality, all the inequalities are
converted into equations via the use of slack variables.
As can be seen, we assume that all the constraints in eq 10

are linear, which is usually the case in supply chain design
problems.4,33,34 The economic objective 8 and environmental
objective 9 are formulated as linear fractional functions, where
both the numerator and denominator are linear functions.
Continuous variables x ̅ model the purchase amounts, sales
amounts, production amounts, transportation amounts, etc.
Binary 0−1 variables y ̅ represent the discrete decisions for the
selection of facility location, technology, capacity level, etc.

■ SOLUTION APPROACHES
In this section, we briefly introduce the major solution
approaches that can be applied to the bicriterion optimization
problem (P0) formulated in the previous section.

ε-Constraint Method. Due to its efficiency and simplicity,
the ε-constraint method is widely used to obtain Pareto-optimal
solutions for multiobjective optimization problems. Consider-
ing our two-dimensional case, the Pareto frontier will be a
Pareto curve. We convert the environmental objective in
problem (P0) into the ε-constraint while leaving the economic
objective in the resulting single-objective ε-constraint sub-
problems (P1). Certainly, the other way around is also valid.
Also, because the standard quantity of functional unit is always

Table 2. Results of Scenario Analysis

scenarios
product
B (ton)

product
C (ton)

total
cost
($)

total
impact
(points)

unit
cost

($/FU)

unit impact
(points/
FU)

1 1 1 950 900 380 360
2 1.5 1.5 1300 1200 347 320
3 2 1 1050 1300 300 371
4 1 2 1550 1100 387 275

ACS Sustainable Chemistry & Engineering Research Article

dx.doi.org/10.1021/sc400080x | ACS Sustainable Chem. Eng. 2013, 1, 1003−10141007



positive, we can derive the following general model formulation
(P1).

∑ ∑ λ= ·ftc cost qt(P1) min /
g

g
i

i i
(12)

∑ ∑ε λ≤ · ·env qts. t.
g

g
i

i i
(13)

+ · ̅ + · ̅ =C C x C y0 1 2 0 (14)

̅ ∈ ̅ ∈x yand {0, 1}n m
(15)

As can be seen, in formulation (P1), all the constraints are
linear. The only nonlinearity is at the objective function, which
is a linear fractional term. This problem belongs to MILFP,
which is a special class of nonconvex MINLP. In order to
globally optimize the MILFP problem (P1) efficiently, we
present two tailored MILFP algorithms in the following
sections.
Parametric Algorithm. We first introduce the parametric

algorithm which relies on the solution of a sequence of MILP
subproblems iteratively to obtain the global optimal solution of
the original MILFP problem.31 The MILP subproblems of the
parametric algorithm corresponding to (P1) are given as
follows and denoted as (P1-D).

∑ ∑ λ‐ = − · ·ftc Q qt(P1 D) min cost
g

g
i

i i
(16)

∑ ∑ε λ≤ · ·qts. t. env
g

g
i

i i
(17)

+ · ̅ + · ̅ =C C x C y0 1 2 0 (18)

̅ ∈ ̅ ∈x yand {0, 1}n m
(19)

where Q is the critical parameter that will be updated iteratively
and eventually approach the optimal value of the original
objective function 12.34,35 The flowchart of the parametric
algorithm is given in Figure 5.
The MILP subproblem (P1-D) has exactly the same

constraints as the original MILFP problem (P1), but it is a
linear parametric objective function, instead of a nonlinear one.

A drawback of this approach is that the number of iterations is
unpredictable and no absolute gap information is returned.

Reformulation-Linearization Method. Another alterna-
tive, the reformulation-linearization method, transforms the
original MILFP problem into its exact equivalent MILP
problem, so that we can take advantage of the powerful
MILP optimization algorithms, such as the branch-and-cut
methods. The reformulation-linearization method integrates
the Charnes−Cooper transformation and Glover’s linearization
scheme, and the equivalent MILP formulation of (P1) is given
below and denoted as (P1-R).

∑‐ =Uftc Ucost(P1 R) min
g

g
(20)

∑ ε≤Uenvs. t.
g

g
(21)

· + · ̅ + · ̅ =C u C z C w0 1 2 0 (22)

∑ λ · =Uqt 1
i

i i
(23)

̅ ≤w u (24)

̅ ≤ · ̅w M y (25)

̅ ≥ − − ̅w u M y(1 ) (26)

∈ ̅ ∈ ̅ ∈ ̅ ∈  u z w y, , , and {0, 1}n n m

(27)

An important property of (P1-R) is that there exists a one-to-
one correlation between the reformulated variables and
variables in the original formulation as shown in Figure 6.

Note that Uqti, Uftc, Ucostg, and Uenvg are continuous variables
included in z,̅ similar as mentioned in the previous section. The
reformulated MILP problem (P1-R) would provide the same
optimal objective value as the original MILFP problem (P1).
Meanwhile, the optimal solution in the original feasible region
can be calculated backward following the one-to-one
correlation relationship.
The concern regarding the reformulation-linearization

method is that the reformulated MILP problem can be
computationally more expensive to be optimized due to the
introduction of extra variables and constraints. However,
problem (P1-R) only needs to be solved once, and the
solution process of which reflects the actual gap information in
real time.Figure 5. Flowchart of the parametric algorithm.

Figure 6. Illustration of the reformulation-linearization method.

ACS Sustainable Chemistry & Engineering Research Article

dx.doi.org/10.1021/sc400080x | ACS Sustainable Chem. Eng. 2013, 1, 1003−10141008



■ CASE STUDY

Over the past decades, our society is making continuous efforts
to search for and improve renewable sources of liquid
transportation fuels. Among the various alternatives (e.g.,
nuclear, wind, solar cells, etc.), the biofuels is considered as the
most promising candidate because of its vast domestic supply
and environmental benefit.20 As the fourth-generation biofuel,
cellulosic drop-in fuels can be converted from the residual,
nonedible parts of food crops as well as other nonfood crops
thus avoiding the potential impacts on food supply.9,11,36

Furthermore, its “drop-in” feature enables the perfect
compatibility with the current vehicle engine technology and
existing fuel distribution infrastructure.21 Due to the Renewable
Fuel Standard, which is part of the Energy Independence and
Security Act of 2007,37 the cellulosic biofuel industry is
undergoing a rapid expansion. Hence, considering the relative
maturity of biomass-to-liquid (BTL) technologies at the current
stage, the study of corresponding BTL supply chain networks is
significantly important and urgent.38

Specific Problem Statement. In this section, we study the
sustainable design of a potential hydrocarbon biofuel supply
chain network in the state of Illinois. We employ a spatially
explicit model, which is modified from the formulation

originally proposed by You and Wang.21 The underlying
superstructure is given in Figure 7. We need to determine the
optimal supply chain configuration (including the locations,
technologies, and capacities for all the conversion facilities, as
well as the amount of material flows for all the transportation
links), with respect to both the economic and environmental
criteria. In this problem, we define the functional unit as per
gasoline-equivalent gallon (GEG) liquid transportation fuel
characterized in terms of energy content. Therefore, the
economic objective is minimizing the cost per GEG (including
capital and operation costs) and the environmental objective is
minimizing the life cycle GHG emission (in terms of CO2

equivalent) associated with per GEG.
Considering the computation complexity of the complete

problem, we study a reduced-size problem in this work. The
candidate locations for harvesting sites and preconversion
facilities are determined based on the total annual yields of the
three biomass resources. The counties with total annual yields
exceeding 280 kton are considered as potential harvesting sites,
and the counties exceeding 380 ktons are considered for
preconversion facility candidates. As for the integrated and
upgrading facilities, the counties with population exceeding 50
000 and 100 000 are considered respectively. Every county is

Figure 7. Supply chain network for biofuel production.

Figure 8. County-level biomass and population distribution in Illinois: (a) population distribution of Illinois; (b)spatial distribution of crop residues
in Illinois; (c) spatial distribution of energy crops in Illinois; (d) spatial distribution of wood residues in Illinois.
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considered as a demand zone. Hence, this BTL superstructure
network contains 30 harvesting sites, 20 potential integrated
biorefinery facilities, 20 possible locations of preconversion
facilities, 21 upgrading facilities, and 102 demand zones. The
potential harvesting sites and the location of candidate plants
are illustrated in Figure 10a.
Three types of biomass resources are explored in this study:

crop residues (including residues of corn, wheat, soybeans,
etc.), energy crops (only including switchgrass), and wood
residues (including forest residues and primary mills, secondary
mills, urban wood residues). On the basis of the statistical data
from the U.S. Department of Agriculture,39 Figure 8b−d
illustrates the spatial distribution of the annual yields of the
three major biomass resources in 102 counties. This BTL
processing network produces two types of liquid biofuel
products, namely gasoline and diesel, to the demand zones. The
annual demands of the entire state in 2013 are predicted based
on data from U.S. Energy Information Administration,40 which
are 4535.59 and 1891.25 MM gallons/year for gasoline and
diesel, respectively. We assume that the specific demand at each
demand zone is proportional to the county population, which is
based on the Census 201241 data and illustrated in Figure 8a.
We consider a near-term scenario to supply 5% of the fuel
usage.
We assumed the moisture content of all the biomass

feedstock to be 15%. The farm-to-gate acquisition costs of
the feedstock are calculated from subtracting the cost of
transportation and storage from the 2008 baseline price
provided in the study by America’s Energy Future Panel on
Alternative Liquid Transportation Fuels.42 The acquisition
costs (including pretreatment) for crop residues, energy crops,
and wood residues are set to $84.5, $97.5, and $50/ton,
respectively.
Two types of conversion pathways are considered:

centralized and distributed, respectively. The integrated path-
way consists of two conversion methods, which are gasification
with Fischer−Tropsch (FT) synthesis and pyrolysis followed
by hydroprocessing. On the other hand, the distributed
pathway first converts the feedstock to intermediate products
(e.g., bio-oil and bioslurry) at preconversion facilities and then
upgrades them into liquid fuel products at upgrading facilities.
The two preconversion technologies considered are rotating
cone reactor pyrolysis and fluidized bed reactor pyrolysis. The
two upgrading technologies considered are hydroprocessing
and gasification with Fisher−Tropsch (FT) synthesis. On the
basis of the annual production amount for integrated
biorefineries, two capacity levels are considered for both

conversion methods, which are 0−100 and 100−200 MM
GEG/y. Two capacity levels for preconversion facilities with
both technologies are 0−1 and 1−2 MM dry tons/y, while the
capacity levels for upgrading facilities are 0−100 and 100−200
MM GEG/y. The capital cost of the conversion facilities is
calculated based on literature data and a scale factor of 0.6,
using the maximum and minimum of each capacity
level.9,11,43−46 The total investment costs of the six conversion
facilities in each capacity level are modeled using piecewise
linear cost curve to include the economy of scale.21

The location of plants is set to the center of each county.
Using the Google Distance Matrix API, the distance between
each pair of the counties is calculated.47 The data for truck
transportation are obtained from Searcy et al.48 and Mahmudi
and Flynn.49 The emission data regarding transportation and
biomass production are based on the GREET model from
Argonne national laboratory50 and existing literature and
reports.9,11,43−45

All the computational experiments are carried out on a PC
with Intel Core i5-2400 CPU at 3.10 GHz and 8.00 GB RAM.
All models and solution procedures are coded in GAMS 23.9.51

MILP models are solved with CPLEX 12 with three processing
cores under parallel mode. MINLP models are solved with SBB
(simple branch-and-bound algorithm), DICOPT (outer-
approximation algorithm), and the global optimizer BARON
1252 utilizing one processing core. The stopping tolerance for
the parametric algorithm is set to 1%. The optimality tolerances
for other methods are all set to 1%.

Model Formulation. The life cycle optimization model
employed for this case study is a modification and simplification
of the one proposed in the work by You and Wang.21 For the
compactness of the article, detailed equations and notations are
presented in the Supporting Information. The model covers the
biomass feedstock supply system, integrated biorefineries,
preconversion facilities, upgrading facilities, and the liquid
fuel distribution system. The major properties of the BTL
supply chain are described by the constraints, including biomass
feedstock availability, material balance relationship, conversion
facility capacity, transportation link capacity, financial con-
straints, etc.
As given by eq 28, the economic objective is to minimize the

unit cost per GEG liquid fuel product, which is defined as the
total annualized cost divided by the standard quantity of
functional unit. It covers the cost of capital investment for
facility establishment, biomass acquisition, production distribu-
tion, material production, transportation, and government
incentives.

φ
=

+ + + + −
∑ ∑ ·∈ ∈

ftc
C C C C C C

sold
min

d D p P p d p

capital acquisition distribution production transportation incentive

, (28)

where φp is the quantity of the functional unit possessed by a
unit of product p; soldd,p is the sales amount of product p at
demand zone d.
As given by eq 29, the environmental objective is to minimize

the environmental impact per GEG liquid fuel product, which is

defined as the total emissions divided by the standard quantity
of functional unit. It covers the environmental impact from
biomass acquisition, product distribution, material production,
transportation, and sequestration credit.

φ
=

+ + + −
∑ ∑ ·∈ ∈

fte
E E E E E

sold
min

d D p P p d p

acquisition distribution production transportation sequestration

, (29)
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Results and Discussion. The Pareto-optimal profiles for
the sustainable design of the potential hydrocarbon biofuel
supply chain are shown in this section. We derive the
approximated Pareto curve by investigating 10 instances of
the aforementioned bicriterion optimization model using the
proposed solution approach. The result is presented in Figure
9. Point A corresponds to the most environmentally sustainable

solution, with the lowest GHG emission of 10.66 kg CO2
equiv/GEG but the highest unit cost of $4.63/GEG. On the
other hand, point C corresponds to the most economical
solution, with the highest GHG emission of 23.82 kg CO2
equiv/GEG but the lowest unit cost of $3.58/GEG.
Considering the trade-offs between the economic and environ-
mental criteria, we identify a “good choice” solution (point B)
with the GHG emission of 12.12 kg CO2 equiv/GEG and the
unit cost of $4.10/GEG, which significantly reduces the cost
with a small sacrifice in the GHG emission. However, note that
all the solutions on the Pareto curve are considered Pareto-
optimal, among which one can choose for the supply chain
design according to the preference. Solutions on the left
emphasize more on reducing the environmental impact and
green manufacturing, while the solutions on the right tend to
pursue a more cost-effective product system.
The Pareto-optimal supply chain profile corresponding to the

most environmentally sustainable solution (point A) is
illustrated in Figure 10b. Only the centralized pathway is
observed with 10 integrated biorefineries established mainly in
the northern Illinois. The installed production capacities of
these integrated biorefineries range from 21.5 to 72.1 MM
GEG per year. The technology of fast pyrolysis plus
hydroprocessing is selected by all the integrated biorefineries,
which is consistent with our previous work.21 This suggests that
the technology of fast pyrolysis followed by hydroprocessing
yields biofuel products in a more environmentally friendly way,
though can be more cost-intensive compared to the technology
of gasification plus FT synthesis. The results also indicate that
reduction of GHG emissions can be achieved by employing the
centralized pathway to avoid the additional emissions from
transportation and distributed production.
The Pareto-optimal supply chain profile corresponding to the

good choice solution (point B) is illustrated in Figure 10c. We
observe 10 integrated biorefineries, 5 preconversion facilities,
and 1 intermediate upgrading facility. The installed capacities of
the integrated biorefineries range from 20.0 to 34.1 MM GEG/

y. The technology of pyrolysis plus hydroprocessing is selected
by all the integrated biorefineries. The installed capacities of the
preconversion facilities range from 200.0 to 465.0 kton/y. The
technology of the rotating cone process which produces bio-oil
is selected by all the preconversion facilities. The installed
capacity of the upgrading facility is 106.4 MM GEG/y, and the
technology of hydroprocessing is selected. Compared with the
most environmentally sustainable solution, the total capacity of
the integrated biorefineries has decreased. Instead, part of the
demand is supplied through the distributed pathway, which
helps to achieve a lower cost per functional unit with a slight
increase in the product carbon footprint. The distributed
pathway is first introduced in northeastern Illinois, because
there is higher demand as well as higher biomass resource
supply in that area. Also, we note that the upgrading facility in
Dupage County is located so that the transportation distances
from the five preconversion facilities and to the demand zones
in high population densities are optimized.
The Pareto-optimal supply chain profile corresponding to the

most economical solution (point C) is illustrated in Figure 10d.
As can be seen, 10 integrated biorefineries, 9 preconversion
facilities, and 2 upgrading facilities are established. The installed
capacities of the integrated biorefineries range from 20.0 to
195.0 MM GEG/y. The technology of gasification plus FT
synthesis is selected by all the integrated biorefineries. The
installed capacities of the preconversion facilities range from
200.0 to 725.5 kton/y. The rotating cone process is selected by
preconversion facilities with smaller (<400 kton/y) capacities,
while the fluidized bed process is selected for relatively large-
size preconversion facilities. The smaller upgrading facility in
Madison County with installed capacity of 50 MM GEG/y
selects the technology of hydroprocessing and receives
intermediate products from south Illinois. The larger upgrading
facility in Dupage County with installed capacity of 200 MM
GEG/y selects the technology of gasification plus FT synthesis
and mainly supplies northeastern Illinois. This solution profile
reveals the trend that the more distributed the biofuel supply
chain configuration, the more cost-effective the product system.
Also, we note the optimal selection of conversion technologies
is influenced by the capacity levels of the facilities. In Figure 11,
we present the cost breakdown for the most cost-effective
solution. As can be observed, the acquisition cost for biomass
feedstock constitutes the most expensive part, which suggests
that biomass price has a significant influence on the economic
sustainability of the product system. Not as significant as in
usual processes, the investment cost in this biofuel supply chain
accounts for 22% of the total cost. The ratio of fixed operation
and maintenance (O&M) cost to the variable production cost
is largely dependent on the selected conversion technologies.
Finally, the transportation cost contributes 14% to the total
cost.
To illustrate the effectiveness of the proposed solution

strategy, we also present the computational results in this
section to compare the proposed tailored MILFP algorithms
with the general-purposed MINLP ones. The original MILFP
model consists of 244 discrete variables, 131 351 continuous
variables, and 30 826 constraints. We have applied the tailored
MILFP methods (parametric algorithm and reformulation-
linearization method) and general-purpose MINLP solvers
(DICOPT, SBB, and BARON 1252) to optimize 10 instances of
the ε-constraint method. The solution reports for the three
selected instances are summarized in Table 3. As can be
observed, the parametric algorithm is demonstrated to be the

Figure 9. Pareto curve showing trade-off between economic and
environmental performances.
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most efficient among the five algorithms, of which the solution
time for all 10 instances ranges from 1.5 to 373.5 CPUs. The
reformulation-linearization method tends to be slower for this
problem, of which the solution time for all 10 instances ranges
from 59.2 to 2853.7 CPUs. Though it is a local optimizer,
DICOPT appears to be a good solver for this problem, which
also converges fast for this problem. SBB and BARON 12
exceed the preset computation time limit (2 h) in most
instances, and the current best solutions are recorded. Overall,
the parametric algorithm exhibits the best computation
performance among all the investigated solution methods
and, thus, is recommended for the global optimization of
MILFP models encountered in the life cycle optimization for
sustainable design of product system.

Figure 10. Optimal design for minimized cost per GEG with population density background. (a) Candidate plants with potential harvesting sites as
background. (b) Most environmentally sustainable biofuel supply chain profile with population distribution as background. (c) Good choice solution
with biomass resouces distribution as background. (d) Most economical biofuel supply chain profile with population distribution as background.

Figure 11. Cost breakdown for most economical solution.
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■ CONCLUSIONS
In this paper, we proposed a life cycle optimization framework
for sustainable design of product system and supply chain
network under economic and environmental concerns. This
general modeling framework coupled the classic LCA method-
ology with multiobjective optimization, which could provide
environmental impact evaluation from a life cycle perspective
while generate and optimize solution alternatives automatically.
Because the economic and environmental performances of a
product system would be measured eventually through the
provision of function from the finished products, we proposed
using two functional-unit-based economic and environmental
objectives, respectively, to achieve a more sustainable system
design. We also proposed effective solution strategies for the
resulting bicriterion optimization problems. For illustration, we
applied the proposed life cycle optimization framework to the
sustainable design of a hydrocarbon biofuel supply chain in
Illinois. A Pareto curve was obtained which clearly revealed the
trade-off between economic and environmental concerns in
decision making. The results indicated that the most environ-
mentally sustainable design can be achieved with a unit cost of
$4.63/GEG and GHG emission of 10.66 CO2 equiv/GEG for
the biomass-derived gasoline and diesel, while the most
economical design leads to a unit cost of $4.10/GEG and
GHG emission of 12.12 CO2 equiv/GEG.
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